213 lines
5.0 KiB

  1. //<script id="fragmentShader" type="x-shader/x-fragment">
  2. uniform vec2 u_resolution;
  3. uniform vec2 u_mouse;
  4. uniform float u_time;
  5. uniform sampler2D u_noise;
  6. #define PI 3.141592653589793
  7. #define TAU 6.283185307179586
  8. const int octaves = 2;
  9. const float seed = 43758.5453123;
  10. const float seed2 = 73156.8473192;
  11. //旋转度数
  12. // float r1 = 0.1 + ((u_mouse.y + 0.5) * .1);
  13. // float r2 = 0.4 + (u_mouse.x * .2);
  14. float r1 = 0.2;
  15. float r2 = 0.9;
  16. // These awesome complex Math functions curtesy of
  17. // https://github.com/mkovacs/reim/blob/master/reim.glsl
  18. vec2 cCis(float r);
  19. vec2 cLog(vec2 c); // principal value
  20. vec2 cInv(vec2 c);
  21. float cArg(vec2 c);
  22. float cAbs(vec2 c);
  23. vec2 cMul(vec2 a, vec2 b);
  24. vec2 cDiv(vec2 a, vec2 b);
  25. vec2 cCis(float r)
  26. {
  27. return vec2( cos(r), sin(r) );
  28. }
  29. vec2 cExp(vec2 c)
  30. {
  31. return exp(c.x) * cCis(c.y);
  32. }
  33. vec2 cConj(vec2 c)
  34. {
  35. return vec2(c.x, -c.y);
  36. }
  37. vec2 cInv(vec2 c)
  38. {
  39. return cConj(c) / dot(c, c);
  40. }
  41. vec2 cLog(vec2 c)
  42. {
  43. return vec2( log( cAbs(c) ), cArg(c) );
  44. }
  45. float cArg(vec2 c)
  46. {
  47. return atan(c.y, c.x);
  48. }
  49. float cAbs(vec2 c)
  50. {
  51. return length(c);
  52. }
  53. vec2 cMul(vec2 a, vec2 b)
  54. {
  55. return vec2(a.x*b.x - a.y*b.y, a.x*b.y + a.y*b.x);
  56. }
  57. vec2 cDiv(vec2 a, vec2 b)
  58. {
  59. return cMul(a, cInv(b));
  60. }
  61. float hash(float p)
  62. {
  63. vec2 o = texture2D( u_noise, vec2((p+0.5)/256.0), -100.0 ).xy;
  64. return o.x;
  65. }
  66. vec2 hash(vec2 p)
  67. {
  68. vec2 o = texture2D( u_noise, (p+0.5)/256.0, -100.0 ).xy;
  69. return o - .5;
  70. }
  71. vec3 hash3(vec2 p)
  72. {
  73. vec3 o = texture2D( u_noise, (p+0.5)/256.0, -100.0 ).xyz;
  74. return o;
  75. }
  76. vec4 hash4(vec2 p)
  77. {
  78. vec4 o = texture2D( u_noise, (p+0.5)/256.0, -100.0 );
  79. return o;
  80. }
  81. // LUT Noise by Inigo Quilez - iq/2013
  82. // https://www.shadertoy.com/view/4sfGzS
  83. float noiseLUT( in vec3 x )
  84. {
  85. vec3 p = floor(x);
  86. vec3 f = fract(x);
  87. f = f*f*(3.0-2.0*f);
  88. vec2 uv = (p.xy+vec2(37.0,17.0)*p.z) + f.xy;
  89. vec2 rg = texture2D(u_noise, (uv+0.5)/256.0).yx - .5;
  90. return mix( rg.x, rg.y, f.z );
  91. }
  92. float fbm1(in vec2 _st, float seed) {
  93. float v = 0.0;
  94. float a = 0.5;
  95. vec2 shift = vec2(100.0);
  96. // Rotate to reduce axial bias
  97. mat2 rot = mat2(cos(0.5), sin(0.5),
  98. -sin(0.5), cos(0.50));
  99. for (int i = 0; i < octaves; ++i) {
  100. v += a * noiseLUT(vec3(_st, 1.));
  101. // v += a * noise(_st, seed);
  102. _st = rot * _st * 2.0 + shift;
  103. a *= 0.4;
  104. }
  105. return v;
  106. }
  107. float pattern(vec2 uv, float seed, float time, inout vec2 q, inout vec2 r) {
  108. q = vec2( fbm1( uv + vec2(0.0,0.0), seed ),
  109. fbm1( uv + vec2(5.2,1.3), seed ) );
  110. r = vec2( fbm1( uv + 4.0*q + vec2(1.7 - time / 2.,9.2), seed ),
  111. fbm1( uv + 4.0*q + vec2(8.3 - time / 2.,2.8), seed ) );
  112. return fbm1( uv + 4.0*r, seed );
  113. }
  114. vec2 hash2(vec2 p)
  115. {
  116. vec2 o = texture2D( u_noise, (p+0.5)/256.0, -100.0 ).xy;
  117. return o;
  118. }
  119. vec3 hsb2rgb( in vec3 c ){
  120. vec3 rgb = clamp(abs(mod(c.x*6.0+vec3(0.0,4.0,2.0),
  121. 6.0)-3.0)-1.0,
  122. 0.0,
  123. 1.0 );
  124. rgb = rgb*rgb*(3.0-2.0*rgb);
  125. return c.z * mix( vec3(1.0), rgb, c.y);
  126. }
  127. vec3 domain(vec2 z){
  128. return vec3(hsb2rgb(vec3(atan(z.y,z.x)/TAU,1.,1.)));
  129. }
  130. vec3 colour(vec2 z) {
  131. return domain(z);
  132. }
  133. vec2 Droste(vec2 uv) {
  134. // 5. Take the tiled strips back to ordinary space.
  135. uv = cLog(uv);
  136. // 4. Scale and rotate the strips
  137. float scale = log(r2/r1);
  138. float angle = atan(scale/(2.0*PI));
  139. uv = cDiv(uv, cExp(vec2(0,angle))*cos(angle));
  140. // 3. this simulates zooming in the tile
  141. uv -= u_time * .2;
  142. // 2. Tile the strips
  143. uv.x = mod(uv.x,log(r2/r1));
  144. // 1. Take the annulus to a strip
  145. uv = cExp(uv)*r1;
  146. return uv;
  147. }
  148. void main() {
  149. vec2 uv = (gl_FragCoord.xy - 0.5 * u_resolution.xy) / min(u_resolution.y, u_resolution.x);
  150. uv *= 2.;
  151. vec2 _uv = uv;
  152. vec2 polar = vec2(length(_uv), atan(uv.y, uv.x));
  153. uv = Droste(uv);
  154. float rInv = 1./length(uv);
  155. uv = uv * rInv - vec2(rInv, 1.);
  156. vec2 p;
  157. vec2 q;
  158. float pat = pattern(uv * 5., seed, u_time * 5., p, q);
  159. vec3 fragcolour = mix(
  160. mix(
  161. vec3(0.1, 0.8, 1.0),
  162. vec3(0.1, 0.8, 1.0),
  163. abs(q.x*p.y)*20.),
  164. vec3(.1, .3, 0.5),
  165. pat
  166. );
  167. fragcolour -= smoothstep(-.1, .9, p.x) * .1;
  168. fragcolour += smoothstep(-.1, .5, p.y) * .1;
  169. fragcolour += (1. - length(_uv * 2.)) *.5 ;
  170. float lcol = clamp(length((_uv) * 4.) - .2, 0., 1.);
  171. float raynoise = fbm1(polar*10.-u_time*2., seed);
  172. fragcolour = mix(
  173. fragcolour,
  174. vec3(sin(p.y * 10.), cos(q.y * 10.), pat * 2.) * .5 + 1.5,
  175. clamp(
  176. abs(
  177. sin(polar.y * 50.)
  178. ) * 1. / length(_uv * _uv * 3.) * raynoise - .2,
  179. 0.,
  180. 1.) * .2);
  181. fragcolour = mix(vec3(1.), fragcolour, lcol);
  182. gl_FragColor = vec4(fragcolour,1.0);
  183. }
  184. //</script>